2005 Vol. 7, No. 23 5175–5178

Concise and Stereoselective Synthesis of the N₇–C₂₅ Fragment of Psymberin

Jason C. Rech and Paul E. Floreancig*

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 florean@pitt.edu

Received August 22, 2005

ABSTRACT

The N₇–C₂₅ fragment of the potent and selective cytotoxic agent psymberin has been prepared through a short (12 linear steps, 15 total steps) and stereoselective sequence. Highlights of this route include a very rapid construction of the pentasubstituted arene, a substrate-controlled diastereoselective fragment coupling using a Mukaiyama aldol reaction, and an efficient entry into a key tetrahydropyranyl cyanide.

The family of compounds that contains pederin, ¹ the mycalamides, ² the theopederins, ³ and the onnamides ⁴ has attracted a considerable amount of attention ⁵ from practitioners of organic synthesis due to their unique structures and potent

biological activity. Synthetically challenging structural motifs include the stable acylaminal linkage, the high density of stereocenters, and the unstable β , γ -unsaturated acetal. From a biological perspective, these compounds demonstrate potent cytotoxic⁶ and immunosuppressive⁷ activities and moderate antiviral activity.² Studies from Burres and Clement⁸ have shown that these compounds inhibit protein synthesis. Recently, Fusetani and co-workers demonstrated⁹ that pederin and theopederin A (Figure 1) are high-affinity ribosome-binding agents.

While the biological activities of these compounds are mechanistically intriguing, the lack of cell line specific toxicity casts doubts upon their viability as clinical agents. In 2004, Pettit¹⁰ and Crews¹¹ independently reported the

^{(1) (}a) Pavan, M.; Bo, G. *Physiol. Comp. Oecol.* **1953**, *3*, 307. (b) Cardani, C.; Ghiringhelli, D.; Mondelli, R.; Quilico, A. *Tetrahedron Lett.* **1965**, 2537. (c) Matsumoto, T.; Yanagiya, M.; Maeno, S.; Yasuda, S. *Tetrahedron Lett.* **1968**, 6297.

^{(2) (}a) Perry, N. B.; Blunt, J. W.; Munro, M. H. G. *J. Am. Chem. Soc.* **1988**, *110*, 4850. (b) Perry, N. B.; Blunt, J. W.; Munro, M. H. G.; Thompson, A. M. *J. Org. Chem.* **1990**, *55*, 223.

⁽³⁾ Fusetani, N.; Sugawara, T.; Matsunaga, S. J. Org. Chem. 1992, 57, 3828.

⁽⁴⁾ Sakemi, S.; Ichiba, T.; Kohmoto, S.; Saucy, G.; Higa, T. J. Am. Chem. Soc. 1988, 110, 4851.

⁽⁵⁾ Representative total and formal syntheses: (a) Sohn, J.-H.; Waizumi, N.; Zhong, H. M.; Rawal, V. H. J. Am. Chem. Soc. 2005, 127, 7290. (b) Trost, B. M.; Yang, H.; Probst, G. D. J. Am. Chem. Soc. 2004, 126, 48. (c) Kocienski, P.; Narquizian, R.; Raubo, P.; Smith, C.; Farrugia, L. J.; Muir, K.; Boyle, F. T. J. Chem. Soc., Perkin Trans. 1 2000, 2357. (d) Roush, R.; Pfeifer, L. A. Org. Lett. 2000, 2, 859. (e) Nakata, T.; Fukui, H.; Nakagawa, T.; Matsukura, H. Heterocycles 1996, 42, 159. (f) Hong, C. Y.; Kishi, Y. J. Am. Chem. Soc. 1991, 113, 9694. (g) Hong, C. Y.; Kishi, Y. J. Org. Chem. 1990, 55, 4242. (h) Wilson, T. M.; Kocienski, P.; Jarowicki, K.; Isaac, K.; Hitchcock, P. M.; Faller, A.; Campbell, S. F. Tetrahedron 1990, 46, 1767. (i) Matsuda, F.; Tomiyoshi, N.; Yanagiya, M.; Matsumoto, T. Tetrahedron 1988, 44, 7063.

⁽⁶⁾ Ogawara, H.; Higashi, K.; Uchino, K.; Perry, N. B. Chem. Pharm. Bull. 1991, 39, 2152.

⁽⁷⁾ Galvin, F.; Freeman, G. J.; Razi-Wolf, Z.; Benacerraf, B.; Nadler, L.; Reiser, H. Eur. J. Immunol. 1993, 23, 283.

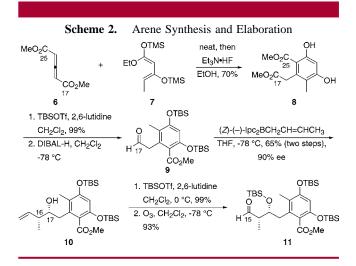
⁽⁸⁾ Burres, N. S.; Clement, J. J. Cancer Res. 1989, 49, 2935.

⁽⁹⁾ Nishimura, S.; Matsunaga, S.; Yoshida, M.; Hirota, H.; Yokoyama, S.; Fusetani, N. *Bioorg. Med. Chem.* **2005**, *13*, 449.

⁽¹⁰⁾ Pettit, G. R.; Xu, J.; Chapuis, J.; Pettit, R. K.; Tackett, L. P.; Doubek, D. L.; Hooper, J. N. A.; Schmidt, J. M. *J. Med. Chem.* **2004**, *47*, 1149.

Figure 1. Representative acylaminal-containing cytotoxic agents.

isolation and structure of compound **1** from South Pacific sponges *Ircinia ramosa* and *Psammocinia* sp. The Pettit group named the structure irciniastatin A and the Crews group named it psymberin on the basis of its proposed¹² biogenesis from symbiotic bacteria. Psymberin is structurally related to pederin through the acylaminal group and the dimethyl tetrahydropyran ring but is unique in this family because of the acyclic acyl group and the presence of the dihydroisocoumarin (Figure 2). Of particular importance is


Figure 2. Structure of psymberin.

that psymberin shows exceptional cell line specific cytotoxicity, with LC₅₀ values for even some closely related cell lines varying by more than 4 orders of magnitude.¹¹ The structural basis for this selectivity apparently resides in either the dihydroisocoumarin, the acyclic acyl group, or both. Synthesis is a uniquely powerful tool for addressing this issue. We have had a long-term interest in this class of molecules¹³ and were drawn to the potential for identifying the structural origin of psymberin's selectivity through rational analogue design. Prompted by De Brabander's elegant completion of psymberin's total synthesis,¹⁴ we report our studies on the preparation of the N₇–C₂₅ subunit.¹⁵ Notable features include the use of cycloaddition chemistry to access the pentasubstituted arene, the application of

Mukaiyama aldol reaction to a diastereoselective fragment coupling and an efficient construction of an amide group that is suitable for elaboration into the natural product and its analogues.

We envisioned 1 to be accessible (Scheme 1) through the classic coupling strategy that was developed for pederin syntheses in which the acylaminal arises from a reductive coupling between a left-hand acid chloride and a right-hand methyl imidate. Therefore, amide 2, or a suitable structural variant, was selected as our initial target. The carbon framework of 2 was seen to be accessible through the addition of ketone 3 into aldehyde 4. Pentasubstituted arene 5 was selected as a logical precursor of 4.

Due to the importance of accessing bulk quantities of 5, we needed a pentasubstituted arene synthesis that is not excessively lengthy and is amenable to large-scale reactions. Thus, we chose to approach this problem through de novo arene synthesis (Scheme 2) rather than through arene

manipulation. Cycloaddition¹⁶ of allene dicarboxylate **6**, available in one step from commercially available dimethyl 1,3-acetonedicarboxylate,¹⁷ with silylketene acetal **7**¹⁸ at

5176 Org. Lett., Vol. 7, No. 23, **2005**

⁽¹¹⁾ Cichewicz, R. H.; Valeriote, F. A.; Crews, P. Org. Lett. 2004, 6, 1951.

⁽¹²⁾ Piel, J.; Butzke, D.; Fusetani, N.; Hui, D. Q.; Platzer, M.; Wen, G. P.; Matsunaga, S. *J. Nat. Prod.* **2005**, *68*, 472.

⁽¹³⁾ Rech, J. C.: Floreancig, P. E. Org. Lett. 2003, 5, 1495.

⁽¹⁴⁾ Jiang, X.; García-Fortanet, J.; De Brabander, J. K. J. Am. Chem. Soc. 2005, 127, 11254.

⁽¹⁵⁾ For studies on the acyl fragment, see: (a) Kiren, S.; Williams, L. J. *Org. Lett.* **2005**, *7*, 2907. (b) Green, M. E.; Rech, J. C.; Floreancig, P. E. *Org. Lett.* **2005**, *7*, 4117.

⁽¹⁶⁾ Langer, P.; Kracke, B. Tetrahedron Lett. 2000, 41, 4545.

ambient temperature and in the absence of solvent provided, after treatment with ethanolic Et₃N•HF, 19 arene 8 in 70% yield. Protection of the phenolic groups proceeded in essentially quantitative yield with TBSOTf and lutidine. This rapid arene construction can be scaled to provide multigram quantities without loss of efficiency. Selective monoreduction of the aliphatic ester with a single equivalent of DIBAL-H at -78 °C yielded aldehyde 9 in sufficient purity to obviate the need for further purification. The stereocenters at C₁₆ and C₁₇ were established through a Brown crotylation reaction²⁰ which provided **10** as a single diastereomer in 90% ee as determined through HPLC (Chiralcel OD-H column). Protection of the C₁₇ hydroxyl group followed by ozonolysis resulted in the uneventful formation of aldehyde 11 in excellent yield.

The preparation of the nucleophilic component of the aldol coupling (Scheme 3) commenced with the addition of

Leighton's allylsilane 12²¹ to keto aldehyde 13.²² This reaction proceeded efficiently and in 94% ee as determined by GC (Chiraldex G-TA column) to form 14. No ketone addition was observed. Protection of the resulting alcohol and enolsilane formation proceeded in quantitative yield to provide 15.

The Lewis acid-mediated coupling of 15 with 11 (Scheme 4) proceeds with antagonistic stereodirection from the substituents at C₁₆ and C₁₇. A Felkin-Anh approach²³ (αdirection) of the nucleophile is expected to provide the syn, syn-stereotriad, while direction from the β -silyloxy group is expected to yield the anti, syn-triad. 24 Congruent with Evans' observations²⁵ that α -direction overrides β -direction when bulky nucleophiles are employed, the Mukaiyama aldol

Fragment Coupling Scheme 4.

reaction between 11 and 15 in the presence of BF3 •OEt2 proceeded with good preference (6:1) for the formation of **16**. Evidence for the presence of the syn,syn-stereoisomer was tentatively provided by analyzing the NMR chemical shifts and coupling constants of the C₁₄ hydrogens, in accord with the model reported by the Roush group,²⁶ and was verified in subsequent intermediates. Chelation-controlled reduction of the resulting β -hydroxy ketone with Et₂BOMe and NaBH₄²⁷ provided diol **17** with excellent stereocontrol. While **16** and its *anti,syn*-isomer were inseparable, the diols that formed from the reduction were readily purified as single stereoisomers. The syn-relationship in the major product was confirmed through a ¹³C chemical shift analysis²⁸ of acetonide 18.

With the carbon framework intact we turned our attention to the formation of the tetrahydropyran ring (Scheme 5). Toward this goal the terminal alkene of 17 was subjected to ozonolytic cleavage. The resulting lactol was acetylated at C₉ and C₁₅ under standard conditions to yield **19**. Selective ionization of the anomeric acetoxy group and trapping the intermediate oxocarbenium ion with TMSCN provided nitrile 20 as a single stereoisomer in excellent yield.²⁹ Hydrating the cyano group under classical conditions resulted in extensive and nonselective protecting group cleavage. To circumvent this problem, we employed the remarkably selective Parkin catalyst (21)³⁰ to produce amide 22 in nearly quantitative yield, thereby completing the synthesis of the N₇-C₂₅ fragment of psymberin.

While optimzing workup conditions for 20 we isolated varying amounts of monodesilylated product 23. Since the structure of 1 was determined solely by NMR, we felt that

Org. Lett., Vol. 7, No. 23, 2005 5177

⁽¹⁷⁾ Node, M.; Fujiwara, T.; Ichihashi, S.; Nishide, K. Tetrahedron Lett. 1998, 39, 6331.

⁽¹⁸⁾ Barker, D.; Brimble, M.; Do, P.; Turner, P. Tetrahedron 2003, 59,

⁽¹⁹⁾ Other sources of fluoride led to the formation of significant quantities of the C_{23} ethyl ether.

⁽²⁰⁾ Brown, H. C.; Bhat, K. S. *J. Am. Chem. Soc.* **1986**, *108*, 5919. (21) Kinnaird, J. W. A.; Ng, P. Y., Kubota, K.; Wang, X.; Leighton, J. A. J. Am. Chem. Soc. 2002, 124, 7920.

⁽²²⁾ Prepared from the condensation of the enamine of isobutyraldehyde with acetyl chloride. See: Inukai, T.; Yoshizawa, R. J. Org. Chem. 1967,

^{(23) (}a) Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 9, 2199. (b) Anh, N. T.; Eisenstein, O. Nouv. J. Chem. 1977, 1, 61. (c) Lodge, E. P.; Heathcock, C. H. J. Am. Chem. Soc. 1987, 109, 3353.

⁽²⁴⁾ Evans, D. A.; Duffy, J. L.; Dart, M. J. Tetrahedron Lett. 1994, 35,

^{(25) (}a) Evans, D. A.; Allison, B. D.; Yang, M. G.; Masse, C. E. J. Am. Chem. Soc. 2001, 123, 10840. (b) Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J. Am. Chem. Soc. 1996, 118, 4322.

⁽²⁶⁾ Roush, W. R.; Bannister, T. D.; Wendt, M. D.; VanNieuwenhze, M. S.; Gustin, D. J.; Dilley, G. J.; Scheidt, K. A.; Smith, W. J. J. Org. Chem. 2002, 67, 4284.

⁽²⁷⁾ Chen, K.-M.; Hardtmann, G. E.; Prasad, K.; Repic, O.; Shapiro, M. J. Tetrahedron Lett. 1987, 28, 155.

^{(28) (}a) Rychnovsky, S. D.; Skalitzky, D. J. Tetrahedron Lett. 1990, 31, 945. (b) Evans, D. A.; Rieger, D. L.; Gage, J. R. Tetrahedron Lett. 1990, *31*, 7099.

⁽²⁹⁾ For a related strategy, see: Hoffmann, R. W.; Schlapbach, A. Tetrahedron Lett. 1993, 34, 7903.

^{(30) (}a) Ghaffar, T.; Parkins, A. W. J. Mol. Catal. A 2000, 160, 249. (b) Ghaffar, T.; Parkins, A. W. Tetrahedron Lett. 1995, 36, 8657.

Scheme 5. Completion of the
$$N_7$$
- C_{25} Fragment

OTBS

a correlation study would be beneficial. Therefore, we subjected **23** to TBAF to cleave all remaining silyl ethers and close the dihydroisocoumarin and then to K_2CO_3 in MeOH to form **24** (Scheme 6). The 1H NMR of **24** in the $C_{11}-C_{25}$ region matched that of psymberin remarkably well, providing strong indication that Crews' structural assignment is indeed valid.

We have completed the synthesis of the N_7 – C_{25} fragment of psymberin through an efficient and stereoselective route. The longest linear sequence is 12 steps from known materials and proceeds in 15% overall yield (13 steps from commercially available reagents), with a total step count of 15 steps from known materials (17 steps from commercially available reagents). Significant transformations include a rapid de novo pentasubstituted arene construction, a diaste-

Scheme 6. Dihydroisocoumarin Formation and NMR Analysis^a

 a ¹H NMR signals in CD₃OD. Values for 24 are in red, and reported¹¹ values for the corresponding hydrogens in psymberin are in blue.

reoselective fragment coupling through a Mukaiyama aldol reaction, and a chemoselective nitrile hydration reaction. This approach is well-suited for completing the total synthesis and, more importantly, for preparing analogues that can be used to study the structural basis for psymberin's uniquely selective cytotoxicity.

Acknowledgment. This work was supported by generous funding from the National Institutes of Health (GM-62924).

Supporting Information Available: Experimental procedures and characterization for all reactions and procedures for enantiomeric excess determination. This material is available free of charge via the Internet at http://pubs.acs.org. OL0520267

5178 Org. Lett., Vol. 7, No. 23, 2005